Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Huub Kooijman, ${ }^{\text {a }}$ Anthony L.

 Spek, ${ }^{\text {a }}$ Charon Zondervan ${ }^{\text {b }} \boldsymbol{t}$ and Ben L. Feringa ${ }^{\text {b }}$${ }^{\text {a }}$ Bijvoet Center for Biomolecular Research, Department of Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and ${ }^{\mathbf{b}}$ Department of Organic and Molecular Inorganic Chemistry, Groningen Centre for Catalysis and Synthesis, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
† Present address: ATO, PO Box 17, 6700 AA Wageningen, The Netherlands.

Correspondence e-mail:
h.kooijman@chem.uu.nl

## Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.028$
$w R$ factor $=0.063$
Data-to-parameter ratio $=19.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

## Dichloro\{2,2'-thiobis[(4S)-4-isopropyl-1,3-oxazolinylphenyl]\}zinc(II)

The title compound, $\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)\right]$, consists of a tetrahedral Zn atom coordinated by a $C_{2}$-symmetric bisoxazoline ligand. In order to participate in complexation, the ligand becomes bowl-shaped, which results in a distance between the Zn and S atoms of 5.2237 (8) $\AA$.

## Comment

Bidentate bis-oxazolines constitute an important class of chiral ligands. Due to their efficient transition-metal binding properties, they have been used with much success in a broad range of asymmetric catalytic transformations, such as the Diels-Alder, cyclopropanation and allylic nucleophilic substitution reactions (Corey \& Wang, 1993; Evans et al., 1993; Fritschi et al., 1986; Togni \& Venanzi, 1994). The bite angle and the steric bulk of the oxazoline substituents determine the extent to which the ligand envelopes the metal and are therefore crucial parameters for the performance of the complex in a catalytic reaction in terms of transfer of stereochemical information. The present structural analysis was carried out to determine if a five-coordinate metal complex with a metal-sulfur interaction is feasible, with the relatively rigid diphenyl sulfide moiety as a spacer. The title compound, (I), however, displays a very long $\mathrm{Zn} \cdots \mathrm{S}$ distance of 5.2237 (8) $\AA$, similar to other zinc complexes with an $N, N, S$ donor set (Darensbourg et al., 1995; Gregorzik \& Vahrenkamp, 1994).

(I)

The packing displays a short contact between $\mathrm{C} 14-\mathrm{H} 14$ and the ring $\mathrm{C} 1-\mathrm{C} 6\left(-\frac{1}{2}+x, \frac{3}{2}-y, 1-z\right)$, with $\mathrm{H} \cdots C g=$ $2.92 \AA$ and $\mathrm{C}-\mathrm{H} \cdots C g=149^{\circ}(\mathrm{Cg}$ is the geometrical centre of the ring).

## Experimental

For the preparation of 2,2'-thiobis[(4S)-2-phenyl-4-isopropyl-1,3oxazoline], dry $\mathrm{ZnCl}_{2}(200 \mathrm{mg})$ and $\mathrm{S}(2-\mathrm{PhCN})_{2}(3.03 \mathrm{~g}, 12.8 \mathrm{mmol})$ were dried under vacuum. ( $S$ )-Valinol ( $3.41 \mathrm{~g}, 33 \mathrm{mmol}$ ) and 100 ml chlorobenzene were added. After refluxing overnight, the solvent was

Received 10 July 2002 Accepted 12 July 2002 Online 19 July 2002


Figure 1
Displacement-ellipsoid plot of the title compound, drawn at the $50 \%$ probability level (Spek, 2001). H atoms have an arbitrary radius.
distilled off. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $3 \times$ 50 ml water. The combined water layers were washed with 50 ml $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were dried on sodium sulfate. Evaporation yielded $5.00 \mathrm{~g}(96 \%)$ of a yellow oil which was sufficiently pure for complexation reactions. Recrystallization from toluene yielded analytically pure white cubes. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right.$, p.p.m.): $0.86\left(d, 6 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.89\left(d, 6 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.20[m, 2 \mathrm{H}$, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ ], $3.69\left(m, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.21(m, 2 \mathrm{H}, \mathrm{NCH}), 7.50-7.61(m$, $6 \mathrm{H}), 7.97(d, 2 \mathrm{H}, J=7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$, p.p.m.): $15.4\left(\mathrm{CH}_{3}\right)$, $18.2\left(\mathrm{CH}_{3}\right), 30.7\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 67.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.2(\mathrm{CHN}), 126.4$ $[\mathrm{ArCC}=\mathrm{N}], 128.1,131.9,132.3,133.9(\mathrm{ArCH}) . \mathrm{C}-\mathrm{S}$ and $\mathrm{C}-\mathrm{C}=\mathrm{N}$ were not resolved. 1643 (CN), 1242 (CO). MS (EI): 408 (M ${ }^{+}$). HRMS calculated 408.187, found 408.187.

For the of preparation dichloro\{2, $2^{\prime}$-thiobis [(4S)-4-isopropyl-1,3oxazolinylphenyl]\}zinc(II), dry $\mathrm{ZnCl}_{2}(93 \mathrm{mg}, 0.68 \mathrm{mmol})$ was dissolved in 7.0 ml THF. At room temperature, a solution of the bisoxazoline ligand ( $278 \mathrm{mg}, 0.68 \mathrm{mmol}$ ) in 11 ml THF was added. The volatiles were evaporated and the resulting solid slowly recrystallized from 15 ml methanol. Two crops of white crystals yielded 368 mg ( $99 \%$ ). Crystals suitable for single-crystal X-ray diffraction were obtained from the first fraction. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 200 \mathrm{MHz}\right.$, p.p.m. $)$ : $0.80\left(d, 6 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.84\left(d, 6 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.05[m, 2 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.59(m, 2 \mathrm{H}, \mathrm{CHO}), 3.75(t, 2 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{CHO}), 4.28(d d$, $2 \mathrm{H}, J=9 \mathrm{~Hz}, J=6 \mathrm{~Hz} \mathrm{CHN}), 7.49-7.86(m, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right.$, p.p.m.): $15.48\left(\mathrm{CH}_{3}\right), 17.95\left(\mathrm{CH}_{3}\right), 31.45\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 68.43(\mathrm{CHN})$, $71.17\left(\mathrm{CH}_{2} \mathrm{O}\right), 126.99(\mathrm{ArC}-\mathrm{S}), 128.77,133.11,133.77,134.01$ (ArCH), $133.0(C-\mathrm{C}=\mathrm{N})$, $170.1(C-\mathrm{C}=\mathrm{N})$. Analysis found (calculated) for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SZn}$ : C 52.52 (52.91); H 5.12 (5.18); S 5.80 (5.89); Zn 11.79\% (12.00\%).

## Crystal data

```
[ ZnCl}(\mp@subsup{\textrm{C}}{24}{}\mp@subsup{\textrm{H}}{28}{}\mp@subsup{\textrm{N}}{2}{}\mp@subsup{\textrm{O}}{2}{}\textrm{S})
Mr}=544.8
Orthorhombic, P2 2 2 2 2 
a=9.5848 (6) \AA
b=15.6021 (9) \AA
c=16.4734 (9) \AA
V=2463.5(2) \AA}\mp@subsup{}{}{3
Z=4
D
```


## Data collection

| Enraf-Nonius CAD-4 Turbo | $\theta_{\text {max }}=27.5^{\circ}$ |
| :--- | :--- |
| $\quad$ diffractometer | $h=0 \rightarrow 12$ |
| $\omega / 2 \theta$ scans | $k=-20 \rightarrow 20$ |
| 6371 measured reflections | $l=0 \rightarrow 21$ |

6371 measured reflections
5650 independent reflections
5246 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.063$
$S=1.05$
5650 reflections
293 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \theta_{\max }=27.5^{\circ} \\
& h=0 \rightarrow 12 \\
& k=-20 \rightarrow 20 \\
& l=0 \rightarrow 21
\end{aligned}
$$

3 standard reflections frequency: 60 min intensity decay: $8 \%$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0352 P)^{2}\right. \\
& +0.52 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.27 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 2463 \text { Friedel pairs } \\
& \text { Flack parameter }=-0.007(8)
\end{aligned}
$$

Table 1
Selected geometric parameters ( $\AA{ }^{\circ}{ }^{\circ}$ ).

| $\mathrm{Zn} 1-\mathrm{S} 1$ | $5.2237(8)$ | $\mathrm{S} 1-\mathrm{C} 1$ | $1.778(3)$ |
| :--- | :--- | :--- | :---: |
| $\mathrm{Zn} 1-\mathrm{Cl} 1$ | $2.2289(7)$ | $\mathrm{S} 1-\mathrm{C} 13$ | $1.764(3)$ |
| $\mathrm{Zn} 1-\mathrm{Cl} 2$ | $2.2107(7)$ | $\mathrm{N} 1-\mathrm{C} 7$ | $1.271(3)$ |
| $\mathrm{Zn} 1-\mathrm{N} 1$ | $2.0357(17)$ | $\mathrm{N} 2-\mathrm{C} 19$ | $1.279(3)$ |
| $\mathrm{Zn} 1-\mathrm{N} 2$ | $2.0363(18)$ |  |  |
| $\mathrm{Cl} 1-\mathrm{Zn} 1-\mathrm{Cl} 2$ | $116.70(3)$ | $\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 2$ | $99.70(7)$ |
| $\mathrm{Cl} 1-\mathrm{Zn} 1-\mathrm{N} 1$ | $109.53(6)$ | $\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 13$ | $105.86(10)$ |
| $\mathrm{Cl} 1-\mathrm{Zn} 1-\mathrm{N} 2$ | $106.50(6)$ | $\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 7$ | $129.45(14)$ |
| $\mathrm{Cl} 2-\mathrm{Zn} 1-\mathrm{N} 1$ | $109.46(5)$ | $\mathrm{Zn} 1-\mathrm{N} 2-\mathrm{C} 19$ | $128.39(15)$ |
| $\mathrm{Cl} 2-\mathrm{Zn} 1-\mathrm{N} 2$ | $113.56(6)$ |  |  |
| $\mathrm{C} 13-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$ | $-40.3(2)$ | $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$ | $118.9(2)$ |
| $\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 13-\mathrm{C} 18$ | $-42.9(2)$ | $\mathrm{C} 13-\mathrm{C} 18-\mathrm{C} 19-\mathrm{N} 2$ | $123.4(3)$ |

2463 Friedel pairs were measured, i.e. $77.3 \%$ of the symmetryunique reflections. The reported Flack x parameter (Flack, 1983) was derived during the final structure-factor calculation. The value obtained for a structure with reversed chirality was 1.009 (16). H atoms were placed at calculated postions, riding on their carrier atoms. The methyl H atoms were refined as rigid groups, allowing for rotation around the $\mathrm{C}-\mathrm{C}$ bond. Isotropic displacement parameters were coupled to the equivalent isotropic displacement parameter of the carrier atom.

Data collection: locally modified CAD-4 Software (Enraf-Nonius, 1989); cell refinement: SET4 (de Boer \& Duisenberg, 1984); data reduction: $H E L E N A$ (Spek, 1997); program(s) used to solve structure: DIRDIF (Beurskens et al., 1992); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: PLATON (Spek, 2001); software used to prepare material for publication: PLATON.

This work was supported in part (ALS) by the Council for the Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO).

## References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Boer, J. L. de \& Duisenberg, A. J. M. (1984). Acta Cryst. A40, C-410.
Corey, E. J. \& Wang, Z. (1993). Tetrahedron Lett. 34, 4001-4004.
Darensbourg, M. Y., Tuntulani, T. \& Reibenspies, J. H. (1995). Inorg. Chem. 34, 6287-6294.

## metal-organic papers

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Evans, D. A., Miller, S. J. \& Lectka, T. (1993). J. Am. Chem. Soc. 115, 64606461.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fritschi, H., Leutenegger, U. \& Pfaltz, A. (1986). Angew. Chem. 98, 1028-1029.

Gregorzik, R. \& Vahrenkamp, H. (1994). Chem. Ber. 127, 1857-1863. Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany. Spek, A. L. (1997). HELENA. Utrecht University, The Netherlands. Spek, A. L. (2001). PLATON. Utrecht University, The Netherlands. URL: http://www.cryst.chem.uu.nl/platon/.
Togni, A. \& Venanzi, L. M. (1994). Angew. Chem. Int. Ed. Engl. 33, 497-526.

